Ahmad Barhoumi
contact info
Email: ahmadba@kth.se
Address: Royal Institute of Technology, Lindstedtsvägen 25, 10044 Stockholm, Sweden
My name is Ahmad, and I am currently a postdoc in the department of mathematics at KTH working with Maurice Duits. Before that I was a postdoc at University of Michigan working with Peter Miller. I completed my PhD at IUPUI under the supervision of Maxim Yattselev.
I am a co-organizer of the Random Matrices, Stochastic Models, and Analysis seminar. During Fall '24, I am organizing the postdoc scientific activities in the Random Matrices and Scaling Limits program at the Mittag-Leffler Institute.
research interests
Orthogonal polynomials and their applications
Approximation theory, particularly Padé approximation
Integrable systems and integrable probability
Painlevé transcendents and special functions
Riemann-Hilbert problems
Papers
A. Barhoumi. Asymptotics of polynomials orthogonal with respect to a generalized Freud weight with application to special function solutions of Painlevé-IV. Stud Appl Math. 2024; 153:e12738. https://doi.org/10.1111/sapm.12738 [48 pages]
A. Barhoumi, P. Bleher, A. Deaño, and M. Yattselev. On Airy solutions of PII and complex cubic ensemble of random matrices, II. To appear in: Contemp. Math. [26 pages] arXiv:2403.03023
A. Barhoumi, O. Lisovyy, P. Miller, and A. Prokhorov. Painlevé-III Monodromy Maps Under the D6→D8 Confluence and Applications to the Large-Parameter Asymptotics of Rational Solutions. SIGMA 20 (2024), 019, [77 pages]. https://doi.org/10.3842/SIGMA.2024.019.
A. Barhoumi, P. Bleher, A. Deaño, and M. Yattselev. On Airy solutions of PII and complex cubic ensemble of random matrices, I. To appear in: Proceedings of the 16th International Symposium, Montreal, Canada, In honor to Richard Askey. [12 pages] arXiv:2310.14898
A. B. Barhoumi and M. L. Yattselev. Non-Hermitian Orthogonal Polynomials on a Trefoil. Constr Approx (2023). [61 pages] https://doi.org/10.1007/s00365-023-09640-6.
A. Barhoumi, P. Bleher, A. Deaño, and M. Yattselev. Investigation of the two-cut phase region in the complex cubic ensemble of random matrices. J. Math. Phys. (2022); 63, 063303 [40 pages] https://doi.org/10.1063/5.0086911
A. B. Barhoumi. Strong asymptotics of Jacobi-type kissing polynomials. Integral Transforms Spec. Funct. (2021); 32:5-8, 377-394 [18 pages], doi: 10.1080/10652469.2021.1923707
A. Barhoumi, A. F. Celsus, and A. Deaño. Global-phase portrait and large-degree asymptotics for the Kissing polynomials. Stud Appl Math. (2021); 147: 448– 526 [79 pages]. https://doi.org/10.1111/sapm.12387
A. Barhoumi and M. L. Yattselev. Asymptotics of polynomials orthogonal on a cross with a Jacobi-type weight. Complex Anal. Oper. Theory (2020); 14, 9 [44 pages] doi:10.1007/s11785-019-00962-7
Teaching
University of Michigan
Math 116: Calculus II (IBL*) (Fall 20, 21)
Math 217: Linear Algebra (IBL*) (Winter 21, Fall 22)
Math 440: Lab of Geometry (see this page for more) (Fall 22, Winter 23)
Math 555: Introduction to Complex Variables (Winter 23)
IUPUI
M-118: Finite Mathematics (Spring 16, Summer 16, Fall 16, Spring 17)
Math 165: Analytical Geometry and Calculus I (Summer 17, Fall 17, Spring 18)
Math 166: Analytical Geometry and Calculus II (Summer 18)
M-119: Brief Survey of Calculus (Fall 18)
Math 547: Analysis for Teachers I (master's course) (Summer 19)
Math 222: Calculus for Technology II (Fall 19)